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Linkage between Genome to 
Metabolome

Figure 1 from Adamski and Suhre (2013). Current Opinions in 
Biotechnology

Several Statistical Approaches 
for Metabolomics

• Unsupervised (uses only metabolites)
– Hierarchical clustering

– Principal Component analysis

– Kohonen neural network

• Supervised (Uses both the metabolites and traits)
– Artificial neural networks

– Discriminant analysis

– Regression analysis

– Regression trees

– Inductive logic programming
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Metabolites as intermediate 
phenotypes

• Metabolites represent intermediate 
phenotypes leading to clinical phenotypes. 
We want phenotype to be as “close” to 
molecular products as possible 

• We have been using GWAS for 
intermediate phenotypes to detecting the 
genes for  diseases or traits

• Examples: blood glucose levels, numerous 
hormones, cholesterol, triglyceride levels, 
lipids, etc.

Metabolites as intermediate 
phenotypes

• We already know many endogenous human 
metabolite pathways

• There are 2,200 enzyme coding genes 
annotated in the human genome

• The SNPs in the genes that are related to 
enzymatic or transport activities are prime 
candidates for harboring the causative 
variance
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First Genome-wide association studies 
with metabolites (mQTL analysis)

Some more examples
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How do we relate metabolites to SNP data?

• Metabolite can be modeled as an outcome & 
SNPs then used as a predictor

• Type of Analysis: Whether to do univariate
analysis, use ratio of metabolites, or use 
multivariate analysis?

• Selection of covariates: Which covariates to 
model? For example, some metabolic traits 
vary with BMI and fasting state, so should be 
included as covariates.

Overview of  GWAS
• Well established Quality Control (QC) 

protocols

• Validated statistical methods exit

• Software programs are available to analyzed 
data, e.g. PLINK

• For QC see 
– Laurie, C. C. et al. (2010) Quality control and quality 

assurance in genotypic data for genome-wide association 
studies. Genetic Epidemiology, 34: 591-602

– Turner et al. (2011) Quality Control Procedures for 
Genome-Wide Association Studies. Current Protocols in 
Human Genetics. 68:1.19.1-1.19.18
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Genome-wide Association Studies 
(GWAS)

• To scan 1 to 2.5 M SNPs of many people to find 
genetic variations associated with a disease

• GWAS are particularly useful in finding genetic 
variant that contribute to common, complex 
diseases, such as asthma, cardiovascular diseases, 
cancer, diabetes, obesity, and mental disorders.

Source: http://www.genome.gov/20019523#1

http://www.genome.gov/26525384 

Why GWAS will enable us to find 
disease genes?

• It utilizes linkage disequilibrium between SNPs 
and putative gene loci.

• The coverage of the genome by SNPs has to be 
excellent

• Availability of genome-wide SNPs chip

M1 M2D

 = .5  = .8
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First Successful GWAS on Age-Related Macular 
degeneration

Science: March 10, 2005

Using 96 cases and 50 controls Klein et al. (2005) found CFH 
gene on chromosome 1 (p=4x10-8, OR=4.60) using 100K affy
chip

Published Genome-Wide Associations through 12/2012
Published GWA at p≤5X10-8 for 17 trait categories

NHGRI GWA Catalog
www.genome.gov/GWAStudies
www.ebi.ac.uk/fgpt/gwas/ 
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What steps needed for GWAS

• Use appropriate design
– Pedigrees, case-control, unrelated individuals

• Determine the sample size
– Power

• Choose SNP genotyping platform
– Affy, Illumina, Perlegen

• Perform QC (HWE, Mendelian errors, outliers, etc.)
• Imputation
• Choose appropriate Association test

Quality Control (QC)

• The first step of GWAS analysis is the quality 
control of the genotypic and phenotypic data.  
There are number of procedures needed to ensure 
the quality of genotype data both at the genotyping 
laboratory and after calling genotypes using 
statistical approaches.

• The QC and association analysis of GWAS data 
can be performed using the robust, freely available, 
and open source software PLINK developed by 
Purcell et al. (2007)
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Quality Control (QC)

• Sex Inconsistency: It is possible that self-reported 
sex of the individual is incorrect.  Sex inconsistency 
can be checked by comparing the reported sex of each 
individual with predicted sex by using X-chromosome 
markers’ heterozygosity to determine sex of the 
individual empirically.

• Relatedness and Mendelian Errors: Another kind 
of error that can occur in genotyping is due to sample 
mix-up, cryptic relatedness, duplications, and pedigree 
errors such as self-reported relationships that are not 
accurate. The relationship errors can be corrected by 
consulting with the self-reported relationships and/or 
using inferred genetic relationships.

Quality Control (QC)

• Batch Effects: For GWAS, samples are processed together 
for genotyping in a batch.  The size and composition of the 
sample batch depends on the type of the commercial array, 
for example, an Affymetrix array can genotype up to 96 
samples, and an Illumina array can genotype up to 24 
samples.  To minimize batch effects, samples should be 
randomly assigned plates with different phenotypes, sex, 
race, and ethnicity.

• The most commonly used method is to compare the average 
minor allele frequencies and average genotyping call rates 
across all SNPs for each plate. Most genotyping laboratories 
perform batch effect detection and usually re-genotype the 
data if there is a batch effect or a plate discarded when there 
is a large amount of missing data.
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Quality Control (QC)

• Marker and sample genotyping efficiency or 
call rate: Marker genotyping efficiency is defined 
as the proportion of samples with a genotype call 
for each marker. If large numbers of samples are 
not called for a particular marker, that is an 
indication of a poor assay, and the marker should 
be removed from further analysis.  A threshold for 
removing markers varies from study to study 
depending on the sample size of the study. 
However, usual recommended call rates are 
approximately 98% to 99%.

Quality Control (QC)

• Population stratification: There are a number of 
methods proposed to correct for population 
substructure.  Three commonly used methods to 
correct for the underlying variation in allele 
frequencies that induces confounding due to 
population stratification: 
– genomic control 

– structured association testing 

– principal components (Most Commonly Used Method)
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Population Stratification

• Population stratification: Sample consists of 
divergent populations

• Case-control studies can be affected by 
population stratification

Quality Control (QC)

• Principal components analysis (PCA) uses 
thousands of markers to detect population 
stratification and Principal Components (PCs) 
then can be used to correct for stratification by 
modeling PCs as covariates in the model 

• PCs can be calculated using a program Eigenstrat 
(Patterson et al., 2006; Price et al., 2006).  There 
are two issues with using PCA, (1) how many 
SNPs to use, and (2) how many PCs should be 
included as covariates in the association analysis.
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Quality Control (QC)
• Hardy-Weinberg equilibrium (HWE) filter: The HWE 

test compares the observed genotypic proportion at the 
marker versus the expected proportion.  Deviation from 
HWE at a marker locus can be due to population 
stratification, inbreeding, selection, non-random mating, 
genotyping error, actual association to the disease or trait 
under study, or a deletion or duplication polymorphism.  
However, HWE is typically used to detect genotyping 
errors.  SNPs that do not meet HWE at a certain threshold 
of significance are usually excluded from further 
association analysis.  

Statistical Methods & Software for 
Genetic Association Studies

The references are those from the following paper:
HJ Cordell, DG Clayton. Genetic association studies. Lancet 2005; 366: 1121-31
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Commonly Used Software

• FBAT
– Family based association analysis

• PLINK
– Whole genome association analysis toolset 

• SAGE (ASSOC)

• Statistical Analysis for Genetic Epidemiology

• LMEKIN in R

• Mixed-model procedure to analyze familial data
• STRUCTURE

– Population structure inference

• EIGENSTRAT
– Detects and corrects for population stratification in genome-wide association 

studies

Some new methods to analyze 
multivariate metabolomic data in GWAS 

framework
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After Association Analysis QC (Cluster 
Plots)

Why do we stop at SNPs?

• EXOME data

• Gene Expression data

• Methylation data
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Manolio et al. Finding the missing heritability 
of complex diseases. Nature. 2009: 747-753 

Exome Data

• GWAS is good for common variants (Allele 
frequency	൒ 0.05)

• Exome chip or exome sequencing provides 
data on coding variants contains lots of rare 
variants (<0.05)

• Exome = Protein Coding Genome
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Some Exome data analysis methods
• Cohort allelelic sum test (CAST): collapses over the rare 

variants and then compares the total rare variant frequency 
between cases and controls (Morgenther et al., 2010)

• Combined multivariate and collapsing (CMC): collapsing 
is done within different subgroups defined by allele 
frequencies and combined using a multivariate distance-
based statistic (Li and Leal, 2008)

• Madsen and Browning (2009) proposed a method includes 
variants of any frequency, but the variants are weighted 
according to their frequencies

• Price et al. (2010) proposed a variable threshold approach 
and showed that this method can be more powerful 
compare to fixed threshold.

Some more Exome data analysis 
methods

• Hoffmann et al. (2010) method models weights, 
incorporates directionality (deleterious or protective) and 
threshold

• Wu et al. (2011) proposed the sequence kernel association 
test (SKAT), a supervised, flexible, computationally 
efficient regression method to test for association between 
genetic variants (common and rare) in a region and a 
continuous or dichotomous trait while easily adjusting for 
covariates.

• There are several other methods such as Lin et al. (2011), 
Zhu et al. (2010) (for both unrelated and family data), 
Ionita-Laza et al. ( 2011), Neale et al. (2011), etc.
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How about integrating all omics
data?

• Genome (G)

• Epigenome (E)

• Transcriptome (T)

• Proteome (P)

• Metabolome (M)

• Phenome (F)

• There are others lipidome, glycome, …

Example: Integrated analysis of phenotype 
with at least two other sources of data
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Schadt et al. (2005): Relationship among 
QTL, RNA levels (gene expression) and 

Complex traits
Define 5 models where L= QTL, R=gene expression, and 
C = complex trait, e.g. obesity
M1: Causal Model, M2: Reactive Model, M3: Independent 
model, M4: Causal model with many RNAs, and M5 
Independent model with one RNA expression

Hypothetical gene network for disease traits 
and related comorbidities (Schadt et al., 2005)
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Method used in Schadt et al. (2005)

• Likelihood‐based causality model selection 
(LCMS) test : Uses conditional correlations to 
determine which relationship among traits is best 
supported by the data. 

• Likelihoods associated with each of the models are 
constructed and maximized with respect to the 
model parameters, and the model with the 
smallest Akaike Information Criterion (AIC) value is 
identified as the model best supported by the 
data.

• If two gene‐expression traits are each driven by a 
strong cis‐acting eQTL, and these eQTLs are closely 
linked, they will induce a correlation structure 
between the two traits.

A multistep procedure to identify causal genes 
for obesity in mice (Schadt et al., 2005)

• Used the LCMS procedure to the omental fat pad mass (OFPM) 
and liver gene‐expression data in the mice data. First, Identified 
most significant expression traits for OFPM

• Step 1: Build a genetic model for the omental fat pad mass 
(OFPM) trait, identifying  the underlying QTLs that reflect the 
initial perturbations that give rise to the genetic components of 
the trait.

• Step 2: For each overlapping expression‐OFPM QTL in the set of 
genes, they fit  the corresponding QTL genotypes, gene‐
expression data and OFPM data to the independent, causal and 
reactive likelihood models.

• Step 3: Rank‐ordered the genes according to the percentage of 
genetic  variance in the OFPM trait that was causally explained 
by variation in their transcript abundances
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Schadt et al. (2005)

• 90 genes tested as causal for OFPM traits at one 
or more QTLs

• Of these genes, Hsd11b1 was one of  the best 
candidates. Causal model fitted the best. 

• C3ar1 and Tgfbr2 were new susceptibiltity genes 
causal for obesity

• These results indicate that integrating genotypic 
and expression data may help the search for new 
targets for common human diseases

Example of Integration of SNPs,  
methylation, gene expression
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Nice Review paper on Integration of Genome, 
Transcriptome, and Metabolome

DNA

RNA

Protein

Metabolites

Phenotype

GWAS mQTL

pQTL

eQTL

meQTL
Biological 
Mechanism 
from genotype 
to phenotype Epigenome
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Challenges

• Database integration is a holy grail of 
systems biology
– Genomic data base (dbGap, NCBI)

– Transcriptome data base (GEO)

– Metabolomics data base (HMDP, METLIN, 
KEGG)

• Not all databases can be easily integrated to 
visualize the results

Future: Integration of “omics” to solve 
the puzzle to understand genetic 

variation in human ?


