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Current Opinion in Biotachnology

Metabolome represents biological end points and depicts the driving force of phenotypes. Non-targeted metabolomics can analyze metabolites in a
comprehensive subset of the metabolome. Targeted metabolomics quantifies selected molecules or pathways.

Figure 1 from Adamski and Suhre (2013). Current Opinions in
Biotechnology

Several Statistical Approaches
for Metabolomics

* Unsupervised (uses only metabolites)
— Hierarchical clustering
— Principal Component analysis
— Kohonen neural network

 Supervised (Uses both the metabolites and traits)
— Artificial neural networks
— Discriminant analysis
— Regression analysis
— Regression trees
— Inductive logic programming




Metabolites as intermediate
phenotypes

» Metabolites represent intermediate
phenotypes leading to clinical phenotypes.
We want phenotype to be as “close” to
molecular products as possible

We have been using GWAS for
intermediate phenotypes to detecting the
genes for diseases or traits

Examples: blood glucose levels, numerous
hormones, cholesterol, triglyceride levels,
lipids, etc.

Metabolites as intermediate
phenotypes

We already know many endogenous human
metabolite pathways

There are 2,200 enzyme coding genes
annotated in the human genome

The SNPs in the genes that are related to
enzymatic or transport activities are prime
candidates for harboring the causative
variance




First Genome-wide association studies
with metabolites (mQTL analysis

Genetics Meets Metabolomics: A Genome-Wide
Association Study of Metabolite Profiles in Human Serum

Christian Gieger'2, Ludwig Geistlinger’, Elisabeth Altmaier®?, Martin Hrabé de Angelis ®%, Florian

Kronenberg?, Thomas Meitinger®?®, Hans-Werner Mewes 7%, H.-Erich Wichmann'2, Klaus M.
Weinberger'?, Jerzy Adamski®®, Thomas lllig’, Karsten Suhre®*~

Abstract

The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in
a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants
that associate with changes in thel homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display
much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide
access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this
hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the
quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations
of frequent single nucleotide polymorphisms (SNPs) with considerable differences in the metabolic homeostasis of the
human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy
for enzymatic activity, up to 28% of the variance can be explained (p-values 10 '° to 10~ %'). We identified four genetic
variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD) where the corresponding metabolic phenotype
(metabotype) clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that
common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This
may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic
characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the
response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.

PLoS Genet. 2008 Nov;4(11):e1000282. doi: 10.1371/journal.pgen.1000282. Epub 2008 Nov 28

Some more examples

PLoS Genet. 2009 Jan;S(1):e1000338. doi: 10.1371/journal. pgen.1000338. Epub 2009 Jan 16.
Genome-wide association study of plasma polyunsaturated fatty acids in the INCHIANTI Study.

PLoS Genet 2009 Oct;5(10):e1000672. doi: 10.1371/journal pgen.1000672. Epub 2009 Oct 2
Genetic determinants of circulating sphingolipid concentrations in European populations.

Hayward C, Isaacs A, Hengstenberg C, Campbell S, Gnewuch C, Janssens AC, Kirichenko AV, Kénig IR, Marroni F, Polasek O, Demirkan A, Kolcic |,
Schwienbacher C, lol W, Biloglav Z, Witteman JC, Pichler |, Zaboli G, Axenovich T, Peters A Si ber S, Wichmann HE, SchunkertH, Hastie N, Oostra BA,
Wild SH, Meitinger T, Gyllensten U, van Duiin CM, Wilson JF, Wright A, Schmitz G, Campbell H.

Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Raly.

Nat Genet, 2010 Feb;42(2):137-41. doi 10.1038/ng.507. Epub 2009 Dec 27
A genome-wide perspective of genetic variation in human metabolism.

Wi T, Gieger C, Zhai G, Rémisch-Margl W, Wang-Sattler R, Prehn C, Altmaier E, Ka ler G, Kato BS, Mewes HW, Meitinger T, de Anqgelis MH, Kronenberq
E, Soranzo N, Wichmann HE, Spector TD, Adamski J, Suhre K.

Institute of Epidemiology, Heimholtz Zentrum Manchen, German Research Center for Environmental Health, Neuherberg, Germany.

re. 2011 Aug 31,477(7362):54-60. doi: 10.1038/nature10354.
Human metabolic individuality in biomedical and pharmaceutical research.

Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wagele B, Altmaier E; CARDIOGRAM, Deloukas P, Erdmann J, Grundberg E, Hammond CJ, de Angelis
MH, Kastenmuiller G, Kéttgen A, Kronenberg F, Mangino M, Meisinger C, Meitinger T, Mewes HW, M
Samani NJ, Small KS, Wichmann HE, Zhai G, lllig T, Spector TD, Adamski J, Soranzo N, Gieger C.

Nat Genet. 2011 Jun;43(6):565-9. doi: 10.1038/ng.837. Epub 2011 May 15.
A genome-wide association study of metabolic traits in human urine.
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How do we relate metabolites to SNP data?

Metabolite can be modeled as an outcome &
SNPs then used as a predictor

Type of Analysis: Whether to do univariate
analysis, use ratio of metabolites, or use
multivariate analysis?

Selection of covariates: Which covariates to
model? For example, some metabolic traits
vary with BMI and fasting state, so should be
included as covariates.

Overview of GWAS

Well established Quality Control (QC)
protocols

Validated statistical methods exit

Software programs are available to analyzed
data, e.g. PLINK

For QC see

— Laurie, C. C. et al. (2010) Quality control and quality
assurance in genotypic data for genome-wide association
studies. Genetic Epidemiology, 34: 591-602

— Turner et al. (2011) Quality Control Procedures for
Genome-Wide Association Studies. Current Protocols in
Human Genetics. 68:1.19.1-1.19.18




Genome-wide Association Studies
(GWAYS)

e Toscan 1to 2.5 M SNPs of many people to find
genetic variations associated with a disease

» GWAS are particularly useful in finding genetic
variant that contribute to common, complex
diseases, such as asthma, cardiovascular diseases,
cancer, diabetes, obesity, and mental disorders.

Source: http://www.genome.gov/20019523#1
http://www.genome.gov/26525384

Why GWAS will enable us to find
disease genes?

* It utilizes linkage disequilibrium between SNPs
and putative gene loci.

M, M,

» The coverage of the genome by SNPs has to be
excellent

 Availability of genome-wide SNPs chip




First Successful GWAS on Age-Related Macular
degeneration
Science: March 10, 2005

Complement Factor H
Polymorphism in Age-Related
Macular Degeneration

Robert J. Klein,” Caroline Zeiss,®* Emily Y. Chew,*~
Jen-Yue Tsai.*™ Richard S. Sackler.’ Chad Haynes."
Alice K. Henning.” jJohn Paul SanGiovanni,” Shrikant M. Mane,“
Susan T. Mayne.” Michael B. Bracken.” Frederick L. Ferris.”
Jurg Ott,’ Colin Barnstable,” Josephine Hoh” +

Age-related macular degeneration (AMD) is a major cause of blindness in the
elderly. We report a genome-wide screen of 96 cases and S0 controls for
polymorphisms associated with AMD. Among 116,204 single-nucleotide
polymorphisms genotyped. an intronic and common variant in the comple-
ment factor H gene (CFFAH) is strongly associated with AMD (nominal £ value
=10 7). In individuals homozygous for the risk allele, the likelihood of AMD is
increased by a factor of 7.4 (95% confidence interval 2.9 to 19). Resequencing
revealed a polymorphism in linkage disequilibrium with the risk allele
representing a tyrosine-histidine change at amino acid 402. This polymor-
phism is in a region of CFH that binds heparin and C-reactive protein. The CF&H
gene is located on chromosome 1 in a region repeatedly linked to AMD in
family-based studies.

Using 96 cases and 50 controls Klein et al. (2005) found CFH
gene on chromosome 1 (p=4x10-%, OR=4.60) using 100K affy
chip

Published Genome-Wide Associations through 12/2012
Published GWA at p<5X10-3 for 17 trait categories

‘GWA Catalog
‘ www.genome.gov/GWAStudies
3"“' Gonoms Resemrcty WW.ebi.ac.uk/fgpt/gwas/  EMBL-EB

Institute




What steps needed for GWAS

Use appropriate design

— Pedigrees, case-control, unrelated individuals
Determine the sample size

— Power

Choose SNP genotyping platform

— Affy, lllumina, Perlegen

Perform QC (HWE, Mendelian errors, outliers, etc.)
Imputation

Choose appropriate Association test

Quality Control (QC)

The first step of GWAS analysis is the quality
control of the genotypic and phenotypic data.
There are number of procedures needed to ensure
the quality of genotype data both at the genotyping
laboratory and after calling genotypes using
statistical approaches.

The QC and association analysis of GWAS data
can be performed using the robust, freely available,
and open source software PLINK developed by
Purcell et al. (2007)




Quality Control (QC)

* Sex Inconsistency: It is possible that self-reported
sex of the individual is incorrect. Sex inconsistency
can be checked by comparing the reported sex of each
individual with predicted sex by using X-chromosome
markers’ heterozygosity to determine sex of the
individual empirically.

Relatedness and Mendelian Errors: Another kind
of error that can occur in genotyping is due to sample
mix-up, cryptic relatedness, duplications, and pedigree
errors such as self-reported relationships that are not
accurate. The relationship errors can be corrected by
consulting with the self-reported relationships and/or
using inferred genetic relationships.

Quality Control (QC)

Batch Effects: For GWAS, samples are processed together
for genotyping in a batch. The size and composition of the
sample batch depends on the type of the commercial array,
for example, an Affymetrix array can genotype up to 96
samples, and an Illumina array can genotype up to 24
samples. To minimize batch effects, samples should be
randomly assigned plates with different phenotypes, sex,
race, and ethnicity.

The most commonly used method is to compare the average
minor allele frequencies and average genotyping call rates
across all SNPs for each plate. Most genotyping laboratories
perform batch effect detection and usually re-genotype the
data if there is a batch effect or a plate discarded when there
is a large amount of missing data.




Quality Control (QC)

* Marker and sample genotyping efficiency or
call rate: Marker genotyping efficiency is defined
as the proportion of samples with a genotype call
for each marker. If large numbers of samples are
not called for a particular marker, that is an
indication of a poor assay, and the marker should
be removed from further analysis. A threshold for
removing markers varies from study to study
depending on the sample size of the study.
However, usual recommended call rates are
approximately 98% to 99%.

Quality Control (QC)

Population stratification: There are a number of
methods proposed to correct for population
substructure. Three commonly used methods to
correct for the underlying variation in allele
frequencies that induces confounding due to
population stratification:

— genomic control

— structured association testing

— principal components (Most Commonly Used Method)

10



Population Stratification

 Population stratification: Sample consists of
divergent populations

Case-control studies can be affected by
population stratification

Quality Control (QC)

Principal components analysis (PCA) uses
thousands of markers to detect population
stratification and Principal Components (PCs)
then can be used to correct for stratification by
modeling PCs as covariates in the model

PCs can be calculated using a program Eigenstrat
(Patterson et al., 2006; Price et al., 2006). There
are two issues with using PCA, (1) how many
SNPs to use, and (2) how many PCs should be
included as covariates in the association analysis.

11



Quality Control (QC)

* Hardy-Weinberg equilibrium (HWE) filter: The HWE
test compares the observed genotypic proportion at the
marker versus the expected proportion. Deviation from
HWE at a marker locus can be due to population
stratification, inbreeding, selection, non-random mating,
genotyping error, actual association to the disease or trait
under study, or a deletion or duplication polymorphism.
However, HWE is typically used to detect genotyping
errors. SNPs that do not meet HWE at a certain threshold
of significance are usually excluded from further
association analysis.

Statistical Methods & Software for
Genetic Association Studies

Approach Reference Software URL
Logistic regression Model log odds of disease as linear function of 20,74, 20 Standard statistical package http://www stata.com/
underlying genotype variables (eq Stata, SAS, S-Plus, R) http/ frwaw.sas.com/
httpy fwwav.insightful com/products/splus/
http://www.r-project.org/
X’ test of association Test for independence of disease status and 20 Standard statistical package See above
genetic risk factor
Linear regression Model quantitative trait as linear function of 75 Standard statistical package See above
underlying genotype variables
Survival analysis Model survivor function or hazard as function of 20,52 Standard statistical package See abave
underlying genotype variables
Transmission/ Test departure of transmission of alleles from 71,76-78 Various (eg, Genehunter, RC-TDT, httpy//fhere.org/labsfkruglyak/ Downloads/index html
disequilibrium test heterozygous parents to affected offspring Genassoc, Transmit, Unphased http://www.uni-bonn.de/~umt7 Oe/soft.htm
from null hypothesis of half http:/ www-gene.cimr.cam.ac.uk/ clayton/software/
http://www.mrc-bsu.cam ac.uk/personal/frank/
Conditional logistic Calculate conditional probability of affected 54,60, 79, 80 Genassoc http://www-gene.cimr.cam.ac uk/clayton/software/
regression offspring genatypes, given parental genotypes Unphased htp://www.mirc-bsu.cam ac.uk/personalfrank/
Log linear models Maodel counts of genotype combinations for 57.58,59 Standard statistical package See above
mother, father, and affected offspring
Pedigree Test departure of transmission of alleles to 81,82 Pedigree disequilibrium test http:/wwaw.chg.duke.eduf software/pdt.hml
disequilibrium test affected pedigree members from null expectation Unphased http:/fwww.mrc-bsu.cam.ac.uk/personal /frank/
Family-base Tests for association o linkage between disease 83-86 Family-based association test http:/fwww.biostat harvard.edu/ ~fbat/fbat htm
association test phenotypes and haplotypes by utilising
family-based controls
Linkage di nalysis of quanti 87,88 Quantitative transmission/ http:/furww sph.umich edufcsg/abecasis/ QTOT/
disequilibrium test and qualitative traits based on variance components disequilibrium test
DNA pooling Test for differences in allele frequencies in 61,89-91 Standard statistical package See abave
different pooled samples while estimating
components of variance due to experimental efror

The references are those from the following paper:

HJ Cordell, DG Clayton. Genetic association studies. Lancet 2005; 366: 1121-31




Commonly Used Software

FBAT

— Family based association analysis
PLINK

— Whole genome association analysis toolset
SAGE (ASSOC)

« Statistical Analysis for Genetic Epidemiology
LMEKIN in R

» Mixed-model procedure to analyze familial data
STRUCTURE

— Population structure inference
EIGENSTRAT

— Detects and corrects for population stratification in genome-wide association
studies

Some new methods to analyze
multivariate metabolomic data in GWAS
framework

OPEN @ ACCESS Freely available online @PLOS | GENETICS

TATES: Efficient Multivariate Genotype-Phenotype
Analysis for Genome-Wide Association Studies

Sophie van der Sluis'*, Danielle Posthuma'>?, Conor V. Dolan™®

Genetc Epldemiology 36: 244-252 (2012)

PSEA: Phenotype Set Enrichment Analysis—A New Method for
Analysis of Multiple Phenotypes
Janina S. Ried,* Angela Déring** Konrad Oexle,* Christa Meisinger,” Juliane Winkelmann 3¢

Norman Klopp,”® Thomas Meitinger,*® Annette Peters,” Karsten Suhre,***! H.-Erich Wichmann * 22
and Christian Gieger'*
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After Association Analysis QC (Cluster
Plots)

Why do we stop at SNPs?

« EXOME data
» Gene Expression data
» Methylation data

14



Manolio et al. Finding the missing heritability
of complex diseases. Nature. 2009: 747-753
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Exome Data

* GWAS is good for common variants (Allele
frequency = 0.05)

» Exome chip or exome sequencing provides
data on coding variants contains lots of rare
variants (<0.05)

» Exome = Protein Coding Genome

15



Some Exome data analysis methods

Cohort allelelic sum test (CAST): collapses over the rare
variants and then compares the total rare variant frequency
between cases and controls (Morgenther et al., 2010)

Combined multivariate and collapsing (CMC): collapsing
is done within different subgroups defined by allele
frequencies and combined using a multivariate distance-
based statistic (Li and Leal, 2008)

Madsen and Browning (2009) proposed a method includes
variants of any frequency, but the variants are weighted
according to their frequencies

Price et al. (2010) proposed a variable threshold approach
and showed that this method can be more powerful
compare to fixed threshold.

Some more Exome data analysis
methods

Hoffmann et al. (2010) method models weights,
incorporates directionality (deleterious or protective) and
threshold

Wu et al. (2011) proposed the sequence kernel association
test (SKAT), a supervised, flexible, computationally
efficient regression method to test for association between
genetic variants (common and rare) in a region and a
continuous or dichotomous trait while easily adjusting for
covariates.

There are several other methods such as Lin et al. (2011),

Zhu et al. (2010) (for both unrelated and family data),
lonita-Laza et al. ( 2011), Neale et al. (2011), etc.

16



How about integrating all omics
data?

Genome (G)

Epigenome (E)

Transcriptome (T)

Proteome (P)

Metabolome (M)

Phenome (F)

There are others lipidome, glycome, ...

Example: Integrated analysis of phenotype
with at least two other sources of data

An integrative genomics approach to infer causal
associations between gene expression and disease

Eric E Schadt!, John Lamb', Xia Yang?, Jun Zhu', Steve Edwards', Debraj GuhaThakurta', Solveig K Sieberts',
Stephanie Monks®, Marc Reitman®, Chunsheng Zhang]. Pek Yee Lum!, Amy Leonardson', Rolf ‘Ihieringcrj,
Joseph M Metzger®, Liming Yang®, John Castle', Haoyuan Zhu', Shera F Kash’, Thomas A Drake®,

Alan Sachs' & Aldons ] Lusis®

A key goal of biomedical research is 1o elucidate the complex network of gene interactions underying complex traits such as
common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integra-

tes DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expres-

sion traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in
DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function
relative to the complex traits under consideration. We show that this approach can predict transcriptional responses lo single gene
perturbation experiments using gene-expression data in the context of a segregating mouse population. We ako demonstrate the
utility of this approach by identifying and experimentally validating the involvement of three new genes in susceplibility to obesity.

17



Schadt et al. (2005): Relationship among
QTL, RNA levels (gene expression) and
Complex traits

Define 5 models where L= QTL, R=gene expression, and
C = complex trait, e.g. obesity

M1: Causal Model, M2: Reactive Model, M3: Independent
model, M4: Causal model with many RNAs, and M5
Independent model with one RNA expression

M

Causal model

More complicated causal models

Hypothetical gene network for disease traits
and related comorbidities (Schadt et al., 2005)

Reactive
———___ MRNAs

Secondary
clinical
traits

//®\\ Comorbidities of

the primary

rima:
ini
r
Disea
v ————— —— disease
m M, M
.
.
.

R

- /
- / Environmental
® _/ contributors
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Method used in Schadt et al. (2005)

e Likelihood-based causality model selection
(LCMS) test : Uses conditional correlations to
determine which relationship among traits is best
supported by the data.

Likelihoods associated with each of the models are
constructed and maximized with respect to the
model parameters, and the model with the
smallest Akaike Information Criterion (AIC) value is
identified as the model best supported by the
data.

If two gene-expression traits are each driven by a
strong cis-acting eQTL, and these eQTLs are closely
linked, they will induce a correlation structure
between the two traits.

A multistep procedure to identify causal genes
for obesity in mice (Schadt et al., 2005)

Used the LCMS procedure to the omental fat pad mass (OFPM)
and liver gene-expression data in the mice data. First, Identified
most significant expression traits for OFPM

Step 1: Build a genetic model for the omental fat pad mass
(OFPM) trait, identifying the underlying QTLs that reflect the
initial perturbations that give rise to the genetic components of
the trait.

Step 2: For each overlapping expression-OFPM QTL in the set of
genes, they fit the corresponding QTL genotypes, gene-
expression data and OFPM data to the independent, causal and
reactive likelihood models.

Step 3: Rank-ordered the genes according to the percentage of
genetic variance in the OFPM trait that was causally explained
by variation in their transcript abundances

19



Schadt et al. (2005)

90 genes tested as causal for OFPM traits at one
or more QTLs

Of these genes, Hsd11b1 was one of the best
candidates. Causal model fitted the best.

C3arl and Tgfbr2 were new susceptibiltity genes
causal for obesity

These results indicate that integrating genotypic
and expression data may help the search for new

targets for common human diseases

Example of Integration of SNPs,
methylation, gene expression

Bell et al. Genome Biology 2011, 12R10

http://genomebiology.com/2011/12/1/R10 B' I
Genome Biology

RESEARCH Open Access

DNA methylation patterns associate with genetic
and gene expression variation in HapMap cell lines

Jordana T Bell'®", Athma A Pai', Joseph K Pickrell’, Daniel J Gaffney'?, Roger Pique-Regi', Jacob F Degner',
Yoav Gilad", Jonathan K Pritchard*"
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Nice Review paper on Integration of Genome,
Transcriptome, and Metabolome

THEMATIC REVIEW

A description of large-scale metabolomics studies: increasing value
by combining metabolomics with genome-wide SNP genotyping
and transcriptional profiling

e Vilker and Matthias N,

Genome 1 Indi | risk

\ Environment ’

Transcriptome/ Proteome
(Transcriptomics/ Proteomics)

Metabolome
(Metabolomics)

| Disease |

Figure 1 Interrelationship between the diferent ‘omes’, nongenetic
factors, and their influence on disease development as well as the
respective ‘omics’ technologies

Biological
Mechanism
from genotype
to phenotype




Challenges

 Database integration is a holy grail of
systems biology
— Genomic data base (dbGap, NCBI)
— Transcriptome data base (GEO)

— Metabolomics data base (HMDP, METLIN,
KEGG)

* Not all databases can be easily integrated to
visualize the results

Future: Integration of “omics” to solve
the puzzle to understand genetic
variation in human ?
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